

www.chemknow.com-

Fertilizer situation in China

Leo Li

China National Chemical Information Center

Service Creates Value | 服务创造价值 中国化工信息中心・咨询 版权所有 Copyright © CNCIC Consulting

Outline

Fertilizer production in China

Fertilizer market price trend

➢ Fertilizer use in China

> Improvement in technology and policy

> Challenge and perspective

During the past 12 year, Chinese fertilizer industry experienced the rapid development. The gross output value of fertilizer increased six fold from 2003 to 2014.

Large number of fertilizer producers and distributors

High production increase VS Low consumption increase

In last ten years, the growth rate of fertilizer production was much higher than before.

The domestic agricultural consumption showed a relative slow increase.

Fertilizer products varied obviously

Fertilizer registration increased significantly

Changes of fertilizer products registered between 2008-2013						
	Products in 2008	Products in 2013	Changes (%)			
Total	35,132	64,340	83			
Compound	24,222	32,942	36			
Blended	4,511	20,346	351			
Organic	3,137	5,890	88			
Mix of organic and inorganic	1632	3,225	98			
Micro soluble	1242	1357	9			
Slow release	676	1133	68			
Bio fertilizer	349	376	8			
Soil amendment	278	352	27			
Secondary soluble	51	78	53			
Macro soluble	11	48	336			
Micro	42	16	-62			
Secondary	4	13	225			
MgSO ₄	7	8	14			
Ca(NO ₃) ₂	6	2	-67			

Big changes in fertilizer trade

Nitrogen Fertilizer and Phosphate Fertilizer export stayed at high level; Potash Fertilizer import kept stable during the 5 years.

The growth rate of China's fertilizer demand tended to level off.

	Fert.	N	P ₂ O ₅	K ₂ O	NPK
1991-2000	4.85	2.85	4.16	9.87	10.49
2001-2010	2.97	0.83	1.60	4.59	7.06
2011-2017e	3.09	0.80	1.30	6.00	5.00

NPK Fertilizer dominated the terminal usage market.

Fertilizer cost for grain crops

Fertilizer allocation also changed greatly.

Fertilizer prices were affected by the changes of energy, policies and international markets.

The urea price in China stayed at low level.

The DAP price in China kept steady.

The import MOP price bottomed down.

Import MOP Ex-warehouse Price in China

The NPK in China hovered at low price.

Chemical fertilizer application rate is relatively higher in China.

N fertilizer input is 1.7 fold higher than crop uptake Total N input is 2.4 fold higher than crop uptake

N input and crop uptake in Chinese crop land in 1961-2009

Current production capacity is enough to support future demand in terms of high recourse use efficiency, food and environment safety.

(Million Tonne)		Situatio	Forecas	t for 2030		
Fertilizer	Producti on capacity	Real production in 2013	Total consumption in agriculture and industry	Consump tion in agricultur e	Demand for agriculture to keep balance	Theory demand for agriculture, industry and export
Nitrogen	59.49	52.87	45.41	34.20	21	30
phosphate	23.50	16.53	12.61	11.48	6.79	10
Potash	5.91	4.72	7.38	6.0	4.74	6

Baseline and forecast for fertilizer development in China

Eutrophication

LETTER

NATURE (Liu et al.,2013)

doi:10.1038/nature11917

Enhanced nitrogen deposition over China

Xuejun Liu¹*, Ying Zhang¹*, Wenxuan Han¹, Aohan Tang¹, Jianlin Shen¹, Zhenling Cui¹, Peter Vitousek², Jan Willem Erisman^{3,4}, Keith Goulding⁵, Peter Christie^{1,6}, Andreas Fangmeier⁷ & Fusuo Zhang¹

1980: 13.2 kg N/ha 2000: 21.1 kg N/ha

Smog in Beijing

Fruit rough bark disease

Controlling fertilizer use will reduce national GHG emission by 2-6%

Industry management

•CH₄ recovery in coal mining •Improve Energy efficiency in fertilizer plants

•N₂O abatement in Nitric acid production •Control N fertilizer export

Crop land management

Right amount-balance crop demand
Right place-Deep placement
Right time-use in crop fast growth period

•Right products- in cooperate NH₃ and NO₃ •Recycling organic nutrients

Integrated industry and Crop land management

National action of nutrient management

More and more farmers received government services.

Farmers who got government services (%)							
	2008 (n=1103)	2013 (n=1919)					
Farmers who aware of soil testing	80	88					
Farmers whose soil has been tested	34	71					
Farmers who got the result of soil testing	22	52					
Farmers who got recommendation card	52	52					
Farmers who got suggestions from consultant	59	81					
Farmers who got training	34	63					
Farmers who got online service	4	8					

Services significantly improved farmers knowledge and practices.

		Farmers who know soil testing				
	Farmers who do not known soil testing	but did not try soil test and train	Only got training	Only tried soil testing	Tried Soil testing and got training	
Samples	N=181	N=326	N=201	N=415	N=796	
Farmers can recognize NPK labeled on fertilizer bag (%)	19	34	43	46	56	
Farmers can judge the nutrient content of fertilizer (%)	30	47	55	54	65	
Farmers who can calculate nutrient demand for crop (%)	13	25	27	34	51	
Farmers know fertilizer have environment risk(%)	38	52	56	63	73	
FarmerswithrationalNapplication rate(%)	41	40	42	49	47	

Subsidies to increase soil organic matter

Government investment for soil organic matter improvement

Fast development in returning of crop straw into field

Subsidies for foliar application of fertilizers

Special subsidies for foliar application of fertilizer on winter wheat in later growth stage to defend heat\ logging and increase yield.

In 2012, 800 million Yuan for winter wheat; In 2013, 1700 million Yuan for winter wheat.

Photo from Jingyuan Xia

National action on high yielding grain, cotton, oil and sugar crop production

In last 6 years, totally 6.7 billion RMB has been invested to set up 12500 "10000 mu demonstration areas".

Crops	Target yield	Farmers' pratice	Increase rate(%)
Spring maize	12	7.6(1118)	58%
Summer maize	10.5	6.9(1709)	52%
Single rice	10.5	7.9(927)	33%
Double rice	13.5	12.6(1159)	7%
Irrigated wheat	9	6.6(1252)	36%
Dryland wheat	6	3.7(1192)	62%

Note:10000 mu=667 hectare; Farmers' practice from farmer survey, including 7357 households in 2008-2009.

Government encourage farmers cooperatives organization development since 2006. Some regional subsidies have been launched to push forward

Regions	Requirement	Subsidies
Tengzhou, shandong	>50 mu	100 Yuan/ mu to landlord
province	50~100 mu	100 Yuan/ mu to tenant
	100-300mu	200 Yuan/ mu to tenant
	>300 mu	300 Yuan/ mu to tenant
Wuhan, Hubei province	≥1000 mu	50 Yuan/ mu to tenant
Nanning, Guangxi province	≥500 mu	200Yuan/ mu to tenant
Jiaxing, zhejiang province	≥ 100mu, more than 5 year	200Yuan/ mu to tenant
	≥300mu, new farmer cooperatives	20000 Yuan/ household

Small subsistence farmers are merging into bigger one 26% of land transferred into 884 thousand farmer cooperatives, 877 thousand family farms, and 2.87 million big farms (>3 ha) in China at the end of 2013

Number of various kinds of farmer cooperatives in China

Source: National Bureau of Statistics of China 2014

Enlarging land size and on-time training helps better use of fertilizer.

Adoption rate of precision topdressing during April 1st to 15th

Wang wenke, unpublished

Subsidies for machinery related to fertilizer application

Subsidy about 30% of price

Subsidy for well construction, facilities

Bigger machine sowing and fertilization

Improvement in technology and policy

Fertilizer broadcasting by hand resulted in low use efficiency, over fertilization and environmental risk

Manpower sowing Labor intensive, lower quality of seeding

Small machine sowing More seeds applied, but lower quality of seeding.

Bigger machine sowing

High efficiency, less seeds applied, high quality of seeding, and high crop yield.

Farmers who adopted mechanized application of fertilizer(%)

	20	08(n=1152)		2	2013(n=2112)	
Crops	Starter	Basal	Тор	Starter	Basal	Тор
	tertilizer	fertilizer	dressing	tertilizer	fertilizer	dressing
Spring	0	55	0	100	65	2
maize						
Winter	70	3	1	100	36	5
wheat						
Sumer	80	3	0	100	62	11
maize						
Single rice	0	2	0	0	4	1
Early rice	0	0	0	0	3	0
Later rice	0	0	0	0	3	0
Average of	34	12	1	65	35	4
grain						

Usage of fertilizer too early than crop sowing resulted in too much of fertilizer input

Enhanced fertilizer use efficiency on grain crops During 2007-2012, cereals yield increased by 19% while N, P_2O_5 , K_2O application rate decreased by 17%, 17%, 31%, PFP_N increased by 43%

Zhang et al., 2013 《national fertilizer development report, 2012》

Enhanced fertilizer use efficiency on grain crops There is small increase of AE on N but high increase on P and K

Changes of agronomy efficiency of fertilizer on main grain crops

		2	000-2005		2006-2010		
	Crop	Applicati on rate (kg/hm ²)	Yield (T/hm²)	AE (kg/kg)	Applicati on rate (kg/hm ²)	Yield (T/hm²)	AE (kg/k g)
	Rice	149	6.8	10.4	170	8.0	12.7
Nitrogen	Wheat	170	5.7	8.0	179	6.3	10.7
	Maize	163	7.0	9.8	183	8.8	11.9
Dhocnhat	Rice	72	5.9	7.4	61	7.1	23.3
Phosphat	Wheat	95	4.7	8.1	95	5.8	15.1
е	Maize	116	7.7	9.1	83	8.6	17.4
	Rice	106	5.9	4.9	88	7.2	16.5
Potash	Wheat	136	5.3	4.5	90	5.9	14.1
	Maize	126	7.6	4.4	83	7.7	12.4

Zhang et al.,2013 《national fertilizer development report, 2012》

Enhanced fertilizer use efficiency on grain crops

There is small increase of RE on N and K, but high increase on P

Recovery efficiency of fertilizer on main cereals crops

Doriod	Crons	Fertilizer u	se efficiency(Sourco	
Periou	Crops	Nitrogen	phosphate	Potash	Source
	Wheat	32.0	19.2	44.4	
2011-2012	Maize	32.0	25.0	42.8	MOA
	Rice	34.9	24.6	41.1	
	Wheat	28.2	10.7	30.3	
2001-2005	Maize	26.1	11.0	31.9	Fusuo Zhang.,2008
	Rice	28.3	13.1	32.4	
2002-2005	Wheat, maize, rice	28.7	13.1	27.3	Academy of agriculture science, 2008
1981-1983	Wheat, maize, rice	30-35	15-20	35-50	Zhu, 2002

Zhang et al.,2013 《national fertilizer development report, 2012》

We have a big potential and possibility to increase crop production, resources use efficiency with low environmental risk, but how to realize it at national scale?

MORE FOR LESS

Using farm designs informed by modelling, Chinese agricultural researchers are increasing yields in experimental plots and in farm studies while reducing the amount of resources used and nutrients lost.

2 MAY 2013 | VOL 497 | NATURE | 33

It is a big challenge to build up an integrated nutrient management scheme in China

Market reform should supported by strong legislation and better service.

Why farmers test fertilizer by mouth?

- 1 No fertilizer law to standardize fertilizer quality.
- ② Farmers' knowledge is not enough to find other ways to distinguish true products.
- ③ No government services are available till date.

Wrong products with wrong application method resulted in 20% more fertilizer input with no increase in crop yield. Better cooperation between fertilizer industry and agriculture is emergent required for food security and environmental safety .

CNCIC - Fertilizer

(photo from Anhui, 2011)

Integrated innovation of machines, fertilizer products, and crop management are required to improve NUE in mechanized fertilization practice.

- Poor land preparation
- Machine did not match crop production system
- Fertilizer is easy to stick and block the pipe
- Machines are expensive for small farmers
- Farmers do not like to spend time on top dressing

Data Source: China Fertilizer Market Week

Thanks !